Arredondamento de números

ProfessorGuru.com.br - Todos os direitos reservados - 2018

site seguro ssl
Hospedagem Professor Guru - One.com
logotipo professor guru

ESTATÍSTICA - PROBABILIDADE - DICAS DE ESTUDO - VÍDEO AULAS

TUTORIAIS PHOTOSHOP - CURSOS PARA PROFESSORES

Inscrever-se no Facebook - Professor Guru
Assinar canal Professor Guru no Youtube
Assinar canal Professor Guru no Youtube
Assinar canal Professor Guru no Youtube
Assinar canal Professor Guru no Youtube

Arredondamento de números

Uma questão importante a ser compreendida por todos os estudantes de Estatística é quanto ao arredondamento. Raramente um cálculo realizado será exato. O mais comum é que os resultados obtidos tenham várias casas decimais.

 

Quantas casas decimais utilizar?

 

O primeiro ponto a ser discutido é: “quantas casas decimais eu devo utilizar?” Não há uma regra definida para isto. O que vale, aqui, é utilizar a coerência e o bom senso. Por exemplo, suponhamos que estamos trabalhando o cálculo de valores monetários, em reais. O que faz mais sentido neste caso é trabalharmos com 2 casas após a vírgula, visto que a terceira casa após a vírgula não faz sentido, ou seja, R$ 3,451 impossibilita, na prática, o pagamento de R$ 0,001. Neste caso, o melhor é utilizarmos R$ 3,45. Um outro exemplo: se estivermos trabalhando com medidas efetuadas com a régua, podemos utilizar até 2 casas após a vírgula, ou seja, faz sentido apresentarmos um resultado do tipo 5,43 cm, visto que estaríamos dizendo que a medida obtida tem 5 centímetros, 4 milímetros e 3 décimos de milímetro (este valor indicaria a incerteza da medida). Porém, não vamos discutir neste momento as incertezas e erros quando utilizamos instrumentos de precisão.

 

Qual regra de arredondamento utilizar?

 

Um segundo ponto a ser notado é a respeito de qual regra de arredondamento devemos utilizar. Existem várias maneiras de fazermos o arredondamento de um número, porém, vamos utilizar o método tradicional de arredondamento que nos diz: quando a casa decimal seguinte àquela que vamos arredondar for 0, 1, 2, 3 ou 4, esta casa decimal permanece como está. Se a casa decimal seguinte for 5, 6, 7, 8 ou 9, somamos 1 à casa decimal a ser arredondada. Vejamos alguns exemplos.

 

Exemplo 1

 

Arredondar 23,4581 para 3 casas decimais. Note que a quarta casa é 1 (menor que 5) . Logo, a casa a ser arredondada, que é o número 8, permanece igual. Assim, após o arredondamento, temos o número 23,458.

 

Exemplo 2

 

Arredondar 3,276 para duas casas decimais. Verificamos que a terceira casa é 6 (maior ou igual a 5). Logo, devemos somar 1 à segunda casa decimal. Após o arredondamento o número fica 3,28.

 

Exemplo 3

 

Arredondar 12,49999 para 1 casa decimal. Como o número da segunda casa decimal é maior ou igual a 5, adicionamos 1 unidade ao valor a ser arredondado, ou seja, 4+1=5. Logo, o número após o arredondamento fica 12,5.

 

Exemplo 4

 

Arredondar para 2 casas decimais o número 35,89076. Como na terceira casa temos o zero, mantemos o valor da segunda casa, ou seja, o número após arredondamento fica 35,89.

 

Exemplo 5

 

Arredondar para 2 casas decimais o número 0,39601. Como na terceira casa decimal temos um valor superior a 5, devemos somar 1 unidade ao valor da segunda casa. Note, porém, que na segunda casa decimal temos o número 9. Pensemos, então, no número 39 (1ª + 2ª decimais). Somando 1 a esse número, teremos 40. Logo, o número arredondado fica 0,40.

 

Arredondamentos sucessivos

 

Muito cuidado! Não existem arredondamentos sucessivos em um mesmo número. É considerado ERRADO executar tal prática.

 

Por exemplo: suponhamos o número 6,847e queremos arredondá-lo para 1 casa decimal. Inicialmente, arredondamos para duas casas obtendo o número 6,85. Agora, arredondamos para 1 casa obtendo 6,9. Esse arredondamento está errado, pois foram executados dois arredondamentos sucessivos no mesmo número. O correto é: o valor da segunda casa decimal é 4, logo o número arredondado corretamente deve ser 6,8.

 

 

Página inicial
Menu